EN
wonderfulzb.com

色天堂下载EMNLP 2025 动态压缩CoT推理新方法LightThinker来了

随着 AI 技术的飞速发展,从「快思考」到「慢思考」,大语言模型(LLMs)在处理复杂推理任务上展现出惊人的能力。无论是我们熟知的思维链(CoT),还是更复杂的深度思考模式(Thinking),都让 AI 的回答日益精准、可靠。 然而,这种性能的提升并非没有代价。模型在推理过程中会产生大量的中间步骤和文本(tokens),这不仅极大地拖慢了计算速度,还对内存和计算资源造成了巨大的压力。简单来说,就是「想得越多,算得越慢,耗得越多」。 为了解决这一难题,研究者们从人类的认知过程中汲取灵感。想象一下人类在解决一个复杂数学题时的情景:我们通常会在草稿纸上写下关键的计算步骤(如下图 a 中的黄色高亮部分),而将一些辅助性的思考过程(非高亮部分)放在脑中。 本文中,来自浙江大学、蚂蚁集团等机构的研究者提出了LightThinker,它模仿了这一高效的思考模式。它训练 LLM 在推理过程中动态地将冗长的中间思考步骤压缩成紧凑的表示(gist tokens /cache tokens),然后「扔掉」原始的、繁琐的推理链,仅保留核心摘要以继续下一步的思考。 这样一来,存放在上下文窗口中的 tokens 数量被大幅削减,从而显著降低了内存占用和计算成本。 LightThinker 通过训练的方式让模型具备这种能力。这涉及到两个关键问题:「何时压缩?」和「如何压缩?」。整个过程可以概括为以下三个关键步骤: 步骤划分:首先,将模型原本冗长的完整回答 Y,按照语义或段落(即一个完整的「想法」)切分成若干个思维步骤 S1, S2, S3, ...。插入特殊指令符:在这些思维步骤之间,插入一组特殊的「指令令牌」4。这组指令符主要包含两个部分: 缓存令牌 (Cache Tokens, C):这是一组特殊的、用于存储压缩后信息的「摘要令牌」。它的作用就像是为即将产生的「思想摘要」预留的空白便签。输出令牌 (Output Token, [o]):这是一个强制性的输出信号,它的作用是告诉模型:「好了,摘要写完了,现在请基于这份摘要继续你下一步的思考」 。 经过这样的改造,原本一条完整的思考链,就变成了一个「思考步骤 1 S1 →进行压缩→ 继续思考步骤 S2 →再次压缩→ ...」的全新格式。这等于是在模型的学习材料中明确地标注出了「何时」需要进行压缩。 教会了模型「何时」压缩,下一步就是最关键的如何压缩。这主要通过一种名为 「Thought-based Attention Mask」的技术来实现,如图 2 (b) 所示。精确地控制着模型在思考时 “能看什么” 和 “不能看什么” 。 生成阶段(基于摘要生成思维):当思维步骤 Si 被成功压缩进 C 之后,更关键的一步来了。在生成下一个思绪片段 S (i+1) 时,注意力掩码会彻底「遮蔽」掉原始的思维步骤 Si。此时,模型只能「看到」最初的问题 X 和包括刚刚生成的摘要在内的所有历史摘要 。 通过这种方式,模型被迫学会仅依赖紧凑的「思想摘要」来进行连贯的、层层递进的推理,而不是依赖越来越长的原始思考全文。 经过以上两个步骤的训练,LightThinker 模型在实际推理时,就会形成一种高效的动态循环,如图 1 (b) 和图 2 (c) 所示,清晰地展示了「生成→压缩→抛弃」的动态循环过程。下面以图 1 (b) 为例进行分析: 模型接收问题,生成第一段思考(Thought 1)。触发压缩,将 Thought 1 中的核心信息压缩成紧凑的摘要(CT1)。抛弃原文,将冗长的 Thought 1 从上下文中丢弃。模型基于问题和摘要(CT1),生成第二段思考(Thought 2)。再次压缩,将 Thought 2 压缩为摘要(CT2),并丢弃 Thought 2 原文。如此循环,直到问题解决。 通过这种「即用即弃」的机制,LightThinker 确保了模型的上下文窗口始终保持在一个非常小的尺寸,从而解决了因上下文过长导致的内存爆炸和计算缓慢问题,实现了效率与性能的完美平衡。 图 3 展示了不同方法在推理过程中上下文长度的变化,其中曲线和坐标轴围城的面积为我们定义的新指标 Dependency,其意义生成 token 时需要关注 token 的数量总和。 峰值内存使用减少 70%:LightThinker 极大地节约了宝贵的内存资源。推理时间缩短 26%:在保证结果准确性的前提下,思考速度得到了显著提升。取得了准确度和效率的平衡。 当前关于加速大语言模型(LLMs)推理过程的研究主要集中在四类方法:模型量化、辅助解码、生成更少的 Token 和减少 KV 缓存。模型量化包括参数量化 [1-2] 和 KV 缓存量化 [3-4],辅助解码主要包括投机采样,本节将重点关注后两类方法。 需要注意的是,生成长文本和理解长文本代表着不同的应用场景,因此,专门针对长文本生成阶段的加速方法(例如,预填充阶段加速技术如 AutoCompressor [5]、ICAE [6]、LLMLingua [7]、Activation Beacon [8]、SnapKV [9] 和PyramidKV[10])不在此处讨论。以下是后两类方法的详细概述。 离散 Token 减少通过提示工程 Prompt [11-13]、指令微调 [14-15] 或强化学习 [16-17] 等技术来引导 LLM 在推理过程中使用更少的离散 token。例如,TALE [11] 提示 LLM 在预定义的 token 预算内完成任务。Arora 和 Zanette [16] 构建特定数据集并采用强化学习奖励机制来鼓励模型生成简洁准确的输出,从而减少 token 使用量。连续 Token 替换这些方法 [18-19] 探索使用连续空间 token 代替传统的离散词汇 token。一个代表性例子是CoConut[18],它利用课程学习来训练 LLM 使用连续 token 进行推理。无 Token 使用通过在模型层之间内化推理过程,在推理过程中直接生成最终答案而不需要中间 token [20-21]。 这三种策略都是在模型训练后实施的,推理过程中不需要额外干预。从技术上讲,这些方法的加速效果依次递增,但代价是 LLM 的泛化性能逐渐下降。此外,第一种策略并不能显著减少 GPU 内存使用。 基于剪枝的策略设计特定的淘汰策略 [22-25] 在推理过程中保留重要的 token。例如,StreamingLLM[23] 认为初始的 sink token 和最近的 token 是重要的;H2O [22] 关注具有高历史注意力分数的 token;SepLLM[24] 强调对应于标点符号的 token 是重要的。基于合并的策略引入锚点 token,训练 LLM 将历史重要信息压缩到这些 token 中,从而实现 KV 缓存合并 [26]。 这两种策略都需要在推理过程中进行干预。关键区别在于:第一种策略是无需训练的,但对每个生成的 token 都要应用淘汰策略;而第二种策略是基于训练的方法,允许 LLM 自主决定何时应用淘汰策略。 受限于自身的数据重构方案(目前分割思维步骤是依赖规则,而不是基于语义)和训练数据(约 16K 训练数据),本文方法在数学相关的任务上表现并不出色。 如下图所示,展示了 LightThinker 在 GSM8K 上的一个 Bad Case。研究者观察到,尽管 LLM 在思考过程中得出了正确答案(见上图中的 Model's Thoughts 字段),但在最终输出中却出现了错误(见图中的 Model's Solution 字段)。 具体来说,在 Model's Solution 字段的第三句话中,第一次出现的「4000」是错误的。这表明在第二次压缩步骤中发生了信息丢失(理论上,「8000」、「4000」和「24000」都应该被压缩,但 LLM 只压缩了「4000」和「24000」),导致后续的推理错误。这类错误在 GSM8K 数据集中频繁出现,表明当前的压缩方法对数值的敏感度还不够。

色天堂下载
色天堂下载为推动V2G技术发展,2023年底,国家发改委、国家能源局等多部门联合发布《关于加强新能源汽车与电网融合互动的实施意见》,明确在2025年底前建成5个以上示范城市以及50个以上双向充放电示范项目,目的是将新能源汽车作为移动式电化学储能资源的潜力通过试点示范得到初步验证。陈平原:会转向“引导者”“陪伴者”,甚至是“队友”。以前教师是“居高临下”地传授课本知识,比如讲文学史,就按时间顺序讲作家、作品,学生记笔记、背知识点就行。现在不一样了,知识获取太容易了,教师若只讲知识,那就没多大意义了。色天堂下载weyvv国产的suv视频赛力斯超级工厂是“汽车产业大脑”生态下的全球标杆级智慧工厂。工厂建筑面积超100000平方米,具备万吨超级智能压铸单元、智能港口级物流数字技术融合运营、行业率先实现车型全价值链数据联通、行业首创全流程质量自动化管理、可持续发展的绿色智慧工厂、开放共享互联互通的汽车产业生态圈七大核心标签,以及高效、智能、尖端、绿色四大特质。工厂依托华为先进的数字孪生技术及智能化生产平台,协同运作行业最多的1600多台智能终端,实现焊接、喷涂等关键工序100%自动化。总装车间自动化率达52%,行业最高。焊装工序通过创新工艺将222个零部件集成为10个,数量减少95%,焊接点减少1440个,下降70%,生产效率显著提升。在安全、服务、管理、生产、办公等方面,工厂均已全面实现智能化蜕变。谷歌发言人Jose Castaneda在一封电子邮件中表示,该公司计划提起上诉。Castaneda表示:“这一决定误解了我们产品的运作方式,我们将对此提出上诉。我们的隐私工具能让用户掌控自己的数据,当用户关闭个性化设置时,我们会尊重他们的这一选择。”
20250915 🔞 色天堂下载2025年3月5日,在全国两会首场“部长通道”上,国家市场监督管理总局局长罗文表示,今年将着力优化监管方式方法,大力促进平台经济健康发展。针对平台滥用“仅退款”规则、低价策略导致“内卷式竞争”等问题,将督促平台规范相关规则和行为,并督促平台收费以合理透明为目标,降低中小商户负担。欧美mv与日韩mv的区别评测车的转向力度较为轻盈,便于操控,削弱了5m级中大型SUV常有的笨重感。日常驾驶中,转向存在一定虚位,但感受自然,契合家用的舒适定位。高速行驶时,转向阻尼随速增益明显,有助于提升行驶稳定性。
色天堂下载
📸 万志齐记者 杨钢 摄
20250915 👙 色天堂下载约纳坦-塔: “我们丢失球权太容易了,完全没有掌控比赛。这场失利是我们应得的,今天也是我们表现非常糟糕的一场比赛。这绝不是我们的目标,也不是我们对自己的期望。我们必须诚实面对。比赛刚结束就解释原因确实很难,但下一场比赛我们必须立刻拿出更好的表现。”在床上怎么做才能让男人荷尔蒙提高其实,类似的情况并非个例。厦门大学嘉庚学院就曾因同样的套路而“翻车”。当时,该校的学生在遭遇不公正处分后,将相关的谈话录音公布到了网上。在舆论的压力下,校方不得不连夜撤销了处分决定。
色天堂下载
📸 王存梅记者 汤亚峰 摄
😈 在业绩沟通会上,博通总裁兼首席执行官陈福阳(Hock Tan)指出,第三财季营收创历史新高,得益于定制AI加速器、网络和VMware业务的持续强劲增长。“受益于我们的客户继续大力投资,预计人工智能半导体收入的增长将加速,到第四财季至62亿美元,由此将实现连续11个季度增长。”此外,公司预计第四季度营收约为174亿美元。《女性私密紧致情趣玩具》
扫一扫在手机打开当前页